
DRDB: A Distributed Real-Time Database Server
for High-Assurance Time-Critical Applications

Sang H. Son, Robert C. Beckinger, and David A. Baker
Department of Computer Science

University of Virginia
Charlottesville, VA 22903, USA

Abstract
Many real-time database systems are now being

used in safety-critical applications, in which human lives
or expensive machinery may be at stake. Transactions in
real-time databases should be scheduled considering
both data consistency and timing constraints. In addi-
tion, a real-time database must adapt to changes in the
operating environment and guarantee the completion of
critical tasks. The effects of scheduling decisions and
concurrency control mechanisms for real-time database
systems have typically been demonstrated in a simulated
environment. In this paper we present a functional real-
time database servel; called DRDB, which provides an
operational platform for research in distributed real-
time database issues.

1.Introduction
Real-time database systems (RTDBS) are essen-

tial for applications that are both data intensive and sub-
ject to real-time constraints, such as defense systems,
industrial automation, aerospace, and network manage-
ment. Appropriate methods and techniques for designing
and implementing database systems that take timing con-
straints into account are playing an ever increasing role
in determining the success or failure of real-time sys-
tems. In recent workshops [RTAS, RTDB], developers of
real-time systems have pointed to the need for basic
research in database systems that satisfy timing con-
straint requirements in collecting, updating, and retriev-
ing shared data.

The distinct feature of RTDBS, as compared to
traditional databases, is the requirement to satisfy the
timing requirements associated with transactions. The
correctness of the system depends not only on the logical
results but also on the time within which the results are
produced. Transactions must be scheduled in such a way
that they can be completed before their corresponding
deadline expires.Most database systems are not designed
for real-time applications and lack features required sup-
porting real-time transactions. Very few conventional
database systems allow users to specify temporal con-
straints or ensure that the system meets those constraints.
In RTDBS, it is not always possible to guarantee all tem-
poral constraints because of the unpredictable data
accesses, so the system must strive to minimize the num-
ber of constraints which are violated [BLS97, Kim961.

Applying real-time principles to a distributed

This work was supported in part by ONR and NSA.

environment complicates the problem [Son96]. The
major issue to consider is the communication between
the database servers and clients in a distributed system.
The added communication cost makes the timing
property of requests to remote servers more
unpredictable. Therefore an operation on one relation at
a local site will take a shorter period of time than the
same operation on a relation located at a remote site.

The design and evaluation of RTDBS present
challenging problems. In this paper we describe an oper-
ational distributed real-time database system, called
DRDB. In addition, we examine issues involving the
development of credible run-time estimates for use in
real-time database scheduling decisions and the use of
timing requirements in performing database operations.

2. Issues in Temporal Functionality
One of the major goals in designing RTDBS is to

minimize the probability of transactions failing to meet
their respective deadlines. Various approaches have been
investigated to develop database systems to achieve this
goal [Best96, Lam97, Lehr95, Son921. They attempt to
make scheduling decisions based mainly on transaction
attributes such as priority, release time and deadline.
These transaction attributes are critical pieces in the
scheduling puzzle, but they are not the only attributes
available for use in solving the problem. One key
attribute absent from most scheduling decisions is a via-
ble transaction run-time estimate. Numerous research
efforts have explored the possibility of using nin-time
estimates in the scheduling decision process. Run-time
estimates have been used in workload policies, priority
assignment policies, conflict resolution policies, and I/O
scheduling policies [Abb92]. These run-time estimates
have typically been model-driven. The results derived
have shown that run-time estimates are a credible option
for use in scheduling decisions. However, the derivation
and use of run-time estimates in a functional real-time
database has not been explored extensively. If the sched-
uler can be provided with an estimate of transaction exe-
cution time, that information can be used in determining
which transaction is closest to missing a deadline, and
hence should be given higher priority, or which transac-
tion can be delayed without risking violation of their tim-
ing constraints. In addition, run-time estimates can be
used by the scheduler to initially screen transactions to
determine eligibility. All transactions with feasible dead-
lines (release time plus run-time estimate is less than
deadline) remain in the system, while all ineligible trans-
actions are aborted.

362
0730-3157/97 $10.00 0 1997 IEEE

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
1997 2. REPORT TYPE

3. DATES COVERED
 00-00-1997 to 00-00-1997

4. TITLE AND SUBTITLE
DRDB: A Distributed Real-Time Database Server for High-Assurance
Time-Critical Applications

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Virginia,Department of Computer Science,151 Engineer’s
Way,Cahrlottesville,VA,22094-4740

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

6

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Often a significant portion of a real-time database
is highly Berishable in the sense that it has value only if
it is used in time. In addition to deadlines, therefore,
other kinds of temporal information should be associated
with data as well as transactions in RTDBS. For example,
each sensor input could be indexed by the time at which
it was taken. Once entered in the database, data may
become out-of-date if it is not updated within a certain
period of time. To quantify this notion of age, data may
be associated with a valid interval. The valid interval
indicates the time interval after the most recent updating
of a data object during which a transaction may access it
with 100% degree of accuracy. What occurs when a
transaction attempts to access a data object outside of its
valid interval is dependent upon the semantics of data
objects and the particular implementation. For some data
objects, for instance, reading it out of its valid interval
would result in 0% accurate values. In general, each data
object can be associated with a validity curve that repre-
sents its degree of validity with respect to the time
elapsed after the data object was last modified. The sys-
tem can compute the validity of data objects at the given
time, provided the time of last modification and its valid-
ity curve.

A real-time transaction should include its tempo-
ral consistency requirement which specifies the validity
of data values accessed by the transaction. For example,
if the temporal consistency requirement is 10, it indicates
that data objects accessed by the transaction cannot be
older than 10 time units relative to the start time of the
transaction. This temporal consistency requirement can
be specified as either hard or soft, just as deadlines are. If
it is hard, an attempt to read an invalid data object (i.e.,
out of its valid interval) will cause the transaction to be
aborted.

While a deadline can be thought of as providing a
time interval as a constraint in the future, temporal con-
sistency specifies a temporal window as a constraint in
the past. As long as the temporal consistency require-
ment of a transaction can be satisfied, the system can be
able to provide an answer using available (may not be up-
to-date) information. The answer may change as valid
intervals change with time. In a distributed database sys-
tem, sensor readings may not be reflected to the database
at the same time, and may not be reflected consistently
due to the delays in processing and communication. A
temporal data model for real-time database systems must
therefore be able to accommodate the information that is
partial and out-of-date. One of the aspects that distin-
guishes a temporal data model for a real-time database
systems from that of conventional database syslems is
that values in a real-time database system are not neces-
sarily correct all the time, and hence the system must be
selective in interpreting data values [O Z S O ~ ~] .

3.Implementation of DRDB
DRDB is designed along the client-server para-

digm. It has a multiple-threaded servers that are capable
of accepting requests from multiple clients. DRDB was
designed with the goal of providing a temporal platform
for conducting research on real-time database issues.
This is a major and natural step forward from]perfor-
mance analysis conducted in a simulated databasle envi-

ronment. Simulated environments are not a substitute for
functional systems. They fail to account for all factors
found in an operational system, and tend to be more sub-
jective in the sense that system parameters can be readily
modified. An operational system cannot be modified to
fit the real-time mechanism being analyzed. The results
derived from an operational real-time database system
provide us with a set of more realistic performance mea-
surements.

The DRDB server is the heart of the database
management system. The server contains an infinite loop
that accepts high-level database requests from multiple
clients. The requests come in as packets. The DRDB sys-
tem provides two different types of packets: cull packets
and retum packets. The call packet is created by the cli-
ent and is the database transaction. The call packet con-
tains all the information that the server needs to carry out
the desired database access operation, including the tim-
ing constraint and temporal consistency specifications
associated with the transaction. A different timing con-
straint can be specified for each transaction submitted, or
the client can use the default timing constraint previously
established. The DRDB client thread passes the call
packet forward to the DRDB server.

Once a command is transferred to the server, it is
passed to the DRDB scheduler running on that server.
The DRDB scheduler uses a run-time estimate
evaluation technique to determine if the system can
provide the client with the information requested within
the timing constraint specified. The DRDB server spins-
off a separate DRDB thread to execute the transaction if
the deadline is feasible. The client will be informed, and
no thread spun-off if the deadline can not be met. The
thread executes until completion and then forwards the
call packet back to the client or the requesting server
which forwarded the command to this server. A
transaction is not preempted by the DRDB thread even if
the deadline is missed. Along with the results of the
transaction, the client will be informed that the deadline
is missed, along with the results of the transaction.

Since DRDB is a distributed database, a client can
issue a command to manipulate data at a remote site. As
part of the preprocessing, the server first examines the
command and identifies all relations needed for
processing it. The server then looks in the relation table
which maps all relations in the database to the site where
they reside. The server forwards the command if the
specified relation in the command resides at a remote
site.

A relation table for a server is created when that
server is initiated. The first operation a new server
performs is reading the relation files in its own directory
and storing these relations in the relation table. The
server then reads a global address file which contains the
name and port numbers of all currently running servers.
The new server uses these port numbers to notify each
server it has begun execution. The new server sends its
list of relations so that other servers can update their
relation tables. Other servers send back their lists of
relations to the new server to be included in its relation
table. The new server is then ready to accept requests
from clients.

363

DRDB also associates a temporal ‘valid time’
attribute with each relation. This is inherent to the sys-
tem, requiring no client involvement. The temporal
attribute is attached to each tuple of a relation and is com-
parable to a timestamp that represents the valid time that
the stored information models reality. The client cannot
set or modify the values associated with the valid time
attribute. However, this attribute can be manipulated for
use in specifying transaction temporal consistency
requirements. For example,

select trk-num from trackfile where valid time < 1
will return only the track numbers (trk-num) of tuples
inserted or updated in the database relation (trackfile)
within the last second of the transaction release time.
DRDB also allows users of the system to manipulate the
valid time attribute in output displays and in creating and
manipulating relations that are similar to those found in
historical temporal database systems [O Z S O ~ ~] . A rela-
tion without the temporal attribute valid time attribute
can be formed by projecting or selecting attributes other
than valid time into a new relation. The DRDB system
processes such relations without attaching any temporal
meaning to them.

The DRDB system employs a strict two-phase
locking (2PL) protocol for concurrency control [Ber87].
The strict locking protocol was selected for concurrency
control because of its prevalence in commercial systems
and because of its desirable characteristic of being recov-
erable and avoiding cascaded aborts.

DRDB allows a user to enter multiple commands
and have the results for all these commands returned
together. The transaction facility therefore gives the user
the ability to treat a group of commands as one atomic
action. Adding the transaction facility requires the
DRDB server to hold all command results until all
commands of a transaction are completed. We follow the
two-phase commit protocol for atomic commitment
[Ber87].

A transaction in DRDB is characterized by its
timing constraints and its computation requirements. The
timing constraints are a release time ‘r’ and deadline ‘d’.
The release time is the time associated with the
transmittal of the transaction by a client site. A
computation requirement is represented by a run-time
estimate ‘rte’ which approximates the amount of
computation, IO, and communication costs associated
with processing a transaction. The deadline corresponds
to the client-specified timing constraint.

I rte

4- time ---+ d

The release time and deadline are known to the
DRDB scheduler when a transaction arrives. The compu-
tation requirements are calculated based on the operation
being performed and the physical characteristics of the
data involved. This information is made available prior to
the scheduling decision being made. We think it is viable
to estimate the execution time of a transaction without

having prior knowledge of the exact data access pattern
of a transaction.

The goal of our system is to minimize the number
of transactions that miss their deadlines, i.e., that finish
after time ‘d’. If transactions can miss deadlines, one
must address the issue as to what happens to transactions
that have already missed their deadlines but have not yet
finished. There are two alternatives. One is to assume
that a transaction that has missed its deadline can be
aborted. This may be reasonable where the value of a
transaction is dependent on the timeliness of the return
response. For example, suppose that a transaction is sub-
mitted to update the ballistic path of a projectile based on
a radar sensing. If the deadline is missed, it may be more
desirable not to perform the operation of updating the
ballistic path, but instead to re-submit the update request
based on a newer sensor reading. The conditions that led
to the triggering of the transaction may have changed.
The initiator of the transaction may be better served if the
transaction is re-submittcd.

A second option is to assume that all transactions
must eventually be completed, regardless of whether
they have missed their deadlines. This may be a correct
approach in an application such as banking where a cus-
tomer would rather have his financial transaction done
late rather than not at all. If the decision is made to pro-
cess the transaction, there is still the issue of the priority
of tardy transactions with respect to other transactions in
the system. Transactions which cannot meet their dead-
lines could receive a higher priority as their lateness
increases, or they could be postponed to a later more con-
venient time.

The DRDB implementation decision was a com-
bination of the two approaches. When a transaction
enters the system, a determination is made as to whether
a transaction can be executed within the temporal con-
straint associated with it. If the transaction cannot meet
its deadline, it is aborted. This has the nice property of
not allowing computation time to be expended on trans-
actions which cannot meet their deadlines, even with the
best effort. To allow such transactions into the system
can adversely affect overall system performance espe-
cially during high load periods. Aborting a few late trans-
actions helps all other transactions meet their deadlines,
by eliminating the competition for resources by tardy
transactions. Once a transaction has bcen acceptcd for
processing, it is executed to completion, regardless as to
whether or not a deadline has been met. This approach
was adopted as a means of validating the run-time esti-
mates derived by the scheduler.

4.Scheduling Policies and Run-Time Estimates
The DRDB scheduling algorithms have three

components: a policy to determine which tasks are eligi-
ble for service, a policy for assigning priorities to tasks,
and a conflict resolution policy. Only the first two poli-
cies are explored in the remainder of this paper.

4.1.Scheduling Policies
The DRDB scheduler is invoked whenever a

transaction enters the system or terminates. The sched-
uler can also be invoked to resolve contention (for either

364

the CPU or data) when conflicts occur between transac-
tions. The first task of the scheduler is to divide the set of
ready transactions into two categories, those transactions
that are capable of meeting their temporal constraints
(eligible) and those that cannot meet their temporal con-
straints (ineligible). All ineligible transactions are
aborted and the client is informed of the decision. This
approach differs from the non-tardy policy [Abb92]
which accepts transactions that are currently not late, but
may be in a position where it is physically impossible to
make their deadlines. Only those transactions withfeasi-
ble deadlines are considered to be eligible. A tiransaction
has a feasible deadline if its deadline is less than or equal
to the current time plus its run-time estimate:

current time (t) + run-time estimate (rte) I deadline (d)

This policy can be adapted to account for the amount of
service time a transaction has already received. The mod-
ified policy would be as follows:

current time (t) + rte - service time(p) I deadliine (d)

where p equals the amount of service time a transaction
has accumulated. This modified policy allows transac-
tions to be screened for eligibility during the course of
execution. Transactions that have been blocked, due to
either data or CPU contention, could be re-evaluated to
determine if they are still capable of meeting their tem-
poral constraint. Note that the succesi of both of these
policies is contingent on the accuracy of the run-time
estimate. Erroneous run-time estimates which lover-esti-
mate the actual computational requirements will cause
transactions to be aborted needlessly. Low estimates can
degrade system performance by allowing transactions,
which in reality cannot meet temporal constraints, to
compete for system resources among transactions which
are trying to meet deadlines.

There are many ways for assigning priorities to
real-time tasks. Three policies extensively studied by
earlier researchers include First Come First Serve
(FCFS), Earliest Deadline (ED) and Leas’t SLack.(LS)
[Abb92]. The primary weakness of FCFS is that it does
not make use of deadline information. It discriminates
against a newly arrived task with an urgent deadline in
favor of an older task which may not have such an urgent
deadline. The ED policy has shown itself to be effective
in certain applications, but it fails to take into account the
run-time estimates. The LS priority assignment policy
was adopted for DRDB. The slack time for a transaction
is an estimate of how long we can delay the execution of
a transaction and still meet its deadline. It is computed by
subtracting the current time plus the run-time estimate
from the deadline of the transaction:

Slack (s) = deadline (d) - (current time (t) + rte)

The smaller the slack, the higher the priority. A
negative slack time is an indication that it is physically
impossible for the transaction to meet its deadline. This
,priority assignment policy does not take the amount of
prior service time into account. The assignment (of prior-
ity is static, occurring once when the transaction enters

the system. The priority computed at that time remains
with the transaction throughout its execution life. A con-
tinuous LS policy could be used which does take service
time into account. The continuous evaluation of priori-
ties causes the LS of all active transaction to be recom-
puted whenever there is contention for processor or data.

A negative slack time could occur if a transaction
has already missed its deadline or is about to miss its
deadline. The possibility of a negative slack time does
not exist if a feasible deadline eligibility screening policy
is implemented, and the LS priority assignment policy is
static. The initial screening conducted to determine eligi-
bility will eliminate any transaction which cannot physi-
cally meet their deadlines and the static LS priority will
prevent the slack associated with an eligible transaction
from ever becoming negative. The current DRDB ver-
sion uses static LS as the means of assigning priorities to
transactions for scheduling, in an attempt to expedite
those transactions which can least afford to be delayed.

4.2.Run-Time Estimates
Conventional real-time systems typically deal

with processes that have predictable resource require-
ments. These predictable requirements allow for a static
evaluation of computation costs. Real-time databases
normally deal with transactions which have unpredict-
able resource requirements. The random nature of such
data accesses complicates the scheduling process in real-
time database systems. A considerable amount of
research effort has been focused on real-time database
scheduling issues and the use of run-time estimates. The
use of run-time estimates in scheduling decisions have
been examined in workload screening, priority assign-
ment, conflict resolution and IO scheduling policies. The
results from the research conducted to date have indi-
cated that run-time estimates are a viable option for
improving scheduling decisions [Abb92, Sha91, Son921.
The fact that critical information such as run-time costs
can improve scheduling decisions and subsequently
overall system performance is quite intuitive. However,
the derivation of run-time estimates is not straightfor-
ward, and have typically been derived from simulation
models. The derivation and use of run-time estimates in
a functional real-time database system has not been
appropriately explored.

One of the goals in the design of DRDB was to
derive credible run-time estimates and to integrate those
estimates in scheduling decisions. The approach we used
was to exploit the physical characteristics of the data
(such as attribute types, number of attributes in a relation,
and the numbers of tuples in a relation) being manipu-
lated, along with the type of database operation being
performed (such as union, set difference and project), in
an attempt to derive credible run-time estimates. While
the arrival and types of transactions entering the system
and the data which they access may be random, the com-
putation steps involved in providing the appropriate
response are not unpredictable. The steps required to
execute any DRDB command is static in nature, and in a
simplified outlook, only the number of iterations
involved is dynamic.

The dynamic nature of the computation is depen-
dent on the number and types of attributes involved,

365

along with the number of tuples which constitute a rela-
tion. For example, the run-time cost for selecting values
from a relation consisting of only a single tuple is mini-
mal. It consists of basic start-up costs (such as transmit-
ting the command, preprocessing, opening of relations,
and reading in the data from disk), the actual computation
cost in selecting that single value, and basic terminating
operations (such as providing the transaction results). The
run-time cost for selecting the same set of values from a
relation of five hundred tuples entails the same basic costs
associated with opening and closing operations for a sin-
gle tuple relation, only the computation costs increase in
relation to the number of tuples that have to be processed.

Other factors such as system load and data con-
flicts do not affect the run-time costs associated with a
given transaction. Such factors only increase the compe-
tition for system resources, such as the CPU and IO
access. For example, given the cost for selecting values
from a given relation is ‘2’ time units. If half that time is
consumed, and that select operation is subsequently
blocked by a higher priority transaction whether it be for
CPU or data contention reasons, it will still require ‘1’
time unit to complete once it becomes unblocked.

With this approach, we ran numerous performance
measurements tests to capture the run-time costs. The
results indicate that viable run-time estimates could be
derived based on the physical characteristics of the data
being manipulated and the operation being performed.
The results which follow are a small extract from those
numerous run-time cost analysis experiments.

4.3.Performance Results
The results of run-time estimate performance mea-

surements for four basic DRDB commands (project,
select, union, average) are given in Figure 1. The x-axis of
Figure 1 is the total number of tuples processed by the
operation. The y-axis is the total elapsed time from the
start of the operation until the final result is received at the
client node. The performance measurements were con-

ducted in an attempt to isolate the cost factors attributable
to the operations performed, and the size of the data pro-
cessed (measured by the number of tuples in the rela-
tions). The operations were initiated from a separate
client node, transmitted to the server node, and the appro-
priate results returned back to the client. The run-time
costs account for activities from the initiation of the oper-
ation to the receipt of the appropriate result. The results
shown are based on 200 performance measurements for
each of the operations and relation sizes shown. The large
sample measurement size was required to validate the
results produced.

The results show that the project and select opera-
tion run-time costs grow in a linear fashion in relation to
the size of the data being processed. The union operation
run-time cost grows exponentially in relation to the size of
the data being processed. The run-time cost is the mean of
the 200 performance measurements. There was minimal
deviation between the mean run-time cost and the perfor-
mance measurements used in deriving the mean, usually
with 90% of the performance measurements falling
within f10% of the mean. The deviation which did occur
between measurements can be attributed to the limited
clock granularity of the hardware involved, and to unpre-
dictable behavior of the underlying operating system.

Our run-time cost results did show that run-time
estimates could be derived not only based on the database
operation being performed and relation size, but also on
the number and types of attributes which make-up rela-
tions. However, the results also showed that such derived
run-time estimates were heuristic in nature, and that no
guarantee could be made that a given transaction’s actual
run-time cost would be as estimated. One of the primary
contributing factors was the support of the underlying
operating system. However, it is still possible to establish
functions which generate acceptably accurate run-time
estimates based on the physical characteristics of the data
and the operations being executed, and that is what is
implemented in the DRDB system.

... _ _ _ _
0 50 100 150 200 250

11 of tGp1es

Figure 1 : DRDB run-time costs for local operations

366

The DRDB system maintains data on the physical
characteristics of the relations in the database. When the
scheduler is invoked it extracts the physical characteris-
tics data for the relations being processed by a given
transaction. This information is used in conjunction with
the operation being performed to derive a run-time esti-
mate. The run-time estimate is subsequently used in sys-
tem scheduling decisions. While no guarantele can be
made for a given transaction, it is possible to state that a
given percentage of transactions can complete within the
run-time estimate generated by the system. Additionally,
it can be stated that the run-time estimates generated will
be within a given percentage of the actual run-time costs.
For example, raising the system generated run-time esti-
mates by 10% resulted in approximately 90% of the
transactions accepted for processing by DRDB having
actual run-time costs within the system generated values.
The down-side of raising the estimate is that some trans-
actions, whose actual run-time cost is below the system
generated estimate, may be needlessly aborted. The per-
centage of these depends on the tightness of the temporal
deadlines attached to the transactions.

5.Conclusions

A real-time database server is one of the critical
components of real-time systems, in which tasks are
associated with deadlines and a significant portion of
data is highly perishable in the sense that it has value to
the system only if it is used quickly. To satisfy thle timing
requirements, transactions must be scheduled consider-
ing not only the consistency requirements but also their
temporal constraints. In addition, the system should be
predictable, such that the possibility of missing a dead-
line for a given transaction can be determined prior to the
execution of that transaction or before that transaction’s
deadline expires.

In this paper, we have presented a relational data-
base server which possesses temporal functionality,
developed for investigating real-time database: issues.
Since the characteristics of a real-time database inanager
are distinct from conventional database managers, there
are different issues to be considered in developing areal-
time database server. For example, the use of run-time
estimates in scheduling policies, and the ability to place
temporal consistency constraints on database operations
are important in real-time databases. DX)B was
designed with the goal of providing an operational plat-
form for conducting research on real-time database
issues. Previous studies using simulated environments
have provided valuable information with respeci to real-
time database issues. However, performance results in
some of the simulated studies are sometimes contradic-
tory with each other since they made different ;issump-
tions about system environments [Best96]. We believe
that an operational environment for investigating real-
time database issues will eliminate some of the problems
associated with simulated systems and provide valuable
and applicable insights to real-time database issues.

The DRDB system provides a foundation for
studying real-time database issues in an operational
environment. The results achieved in deriving and apply-
ing heuristic run-time estimates and the ability to attach
temporal consistency specifications are promising. How-

ever, there remains many technical issues associated with
real-time databases that need further investigation. We
plan to work on analyzing various conflict resolution
mechanisms and improving the temporal functionality.

[Abb92]

[Bert371

[BLS97]

[Best961

[Kim961

[Lam971

[Lehr951

[Ozso95]

[RTAS]

[RTDB]

[Sha9 13

[Son921

[Son961

REFERENCES
R.Abbott, and H.Garcia-Molina, “Scheduling
Real-time Transactions: a Performance Eval-
uation,’’ ACM Trans. on Database Systems,
vol. 17, no. 3, Sept. 1992, pp 513-560.
P.A,Bernstein, V.Hadzilacos, and N.Good-
man, “Concurrency Control and Recovery in
Database Systems”, Addison-Wesley Pub-
lishing Co., 1987.
A. Bestavros, K. Lin, and S. H. Son, “Real-
Time Database Systems: Issues and Applica-
tions,’’ Kluwer Academic Publishers, 1997.
A. Bestavros, “Advances in Real-Time Data-
base Systems Research,” ACM SIGMOD
Record, vol. 25, no. 1, March 1996.
Y. Kim and S. H. Son, “Supporting Predict-
ability in Real-Time Database Systems,”
IEEE Real-Time Technology and Applica-
tions Symposium (RTAS’96), Boston, MA,
June 1996, pp 38-48.
K. Lam, S. H. Son, and S. Hung, “A Priority
Ceiling Protocol with Dynamic Adjustment
of Serialization Order,” IEEE Conference on
Data Engineering, Birmingham, UK, April
1997.
M. Lehr, Y. Kim, and S. H. Son, “Managing
Contention and Timing Constraints in a Real-
Time Database System,” 16th IEEE Real-
Time Systems Symposium, Pisa, Italy, Dec.

G. Ozsoyoglu and R. Snodgrass, “Temporal
and Real-Time Databases: A Survey,” IEEE
Trans. on Knowledge and Data Eng., August

IEEE Real-Time Technology and Applica-
tions Symposium, Boston, MA, June 1996.
First Workshop on Real-Time Database Sys-
tems, Newport Beach, CA, Feb. 1996.
L.Sha, R.Rajkumar, S. H. Son, andC. Chang,
“A Real-Time Locking Protocol,” IEEE
Transactions on Computers, vol. 40, no. 7,

S. H. Son, J. Lee, and Y. Lin, “Hybrid Proto-
cols using Dynamic Adjustment of Serializa-
tion Order for Real-Time Concurrency Con-
trol,” Journal of Real-Time Systems, vol. 4,
Sept. 1992, pp 269-276.
Son, S. H., F. Zhang, and B. Hwang, “Con-
currency Control for Replicated Data in Dis-
tributed Real-Time Systems,” Journal of Da-
tabase Management, Special Issue on Real-
time Database Systems: Theory and Practice,
vol. 7, no. 2, pp 12-23, March 1996.

1995, pp 332-341.

1995, pp 513-532.

July 1991, pp 782-800.

367

